This tool is provided without any warranty.
Supported unit prefixes:
Add unit prefix as a suffix to the number, for example: 1M.
f p n u m c   k M G T P
femto pico nano micro milli centi (none) kilo mega giga tera peta
10-15 10-12 10-9 10-6 10-3 10-2 100 103 106 109 1012 1015
 
For squared quantities (for example areas), only the following suffixes are supported: u, m, c, k, M

Ohm's law

Enter two quantities, the third one will be calculated
$R = \dfrac{V}{I}$
Voltage V
Resistance Ω
Current A

Power (for DC circuits)

Enter two quantities, the third one will be calculated
$P = V \cdot I$
Voltage V
Current A
Power W

Power (for DC circuits)

Enter two quantities, the third one will be calculated
$P = V \cdot I \cdot \mathrm{cos}(\phi)$
$Q = V \cdot I \cdot \mathrm{cos}(\phi)$
$ |S| = V_{rms} \cdot I_{rms}$
Input quantities:
Voltage V
Current A
Phase angle
Output quantities:
Real (active) power W
Reactive power var
Apparent power VA

E6/E12/E24 series (IEC 60063 standard)

Input quantities:
Value
Series:
Output quantities:
Closest lower or equal match
Closest higher or equal match
Closest match

LED resistor calculator

$R = \dfrac{V_{in}-V_{LED}}{I_{LED}}$
Input quantities:
Desired current A
Input voltage V
LED voltage V
Resistor series:
Output quantities:
Calculated resistance Ω
Calculated dissipation W
Nearest bigger resistor: Ω
New LED current*: A
* with nearest bigger resistor

Capacitance / 3 digit code conversion

Enter either capacitance or code, the other value will be auto-calculated
Allowable range: 10pF to 99mF (although capacitors bigger than 10uF usually aren't marked this way)
Code
Capacitance F
Letter B C D F G J K M Z
Tolerance ±0.1pF ±0.25pF ±0.5pF ±1% ±2% ±5% ±10% ±20% +80, -20%

Capacitor reactance

Enter two quantities, the third one will be calculated
$X_C = \dfrac{1}{2 \cdot \mathrm{\pi} \cdot f \cdot C}$
Capacitance F
Frequency Hz
Reactance Ω

Inductor reactance

Enter two quantities, the third one will be calculated
$X_L = 2 \cdot \mathrm{\pi} \cdot f \cdot L$
Inductance H
Frequency Hz
Reactance Ω

RLC circuit impedance

$X_L = 2 \cdot \mathrm{\pi} \cdot f \cdot L$
$X_C = \dfrac{1}{2 \cdot \mathrm{\pi} \cdot f \cdot C}$
Serial:
$Z = R + j \cdot 2 \cdot \mathrm{\pi} \cdot f \cdot L - \dfrac{j}{2 \cdot \mathrm{\pi} \cdot f \cdot C}$
$|Z| = \sqrt{R^2+(X_L-X_C)^2}$
If $X_L > X_C$, then $\phi = \mathrm{arccos} (\dfrac{R}{|Z|})$
If $X_L < X_C$, then $\phi = -\mathrm{arccos} (\dfrac{R}{|Z|})$
Parallel:
$|Z| = \dfrac{1}{\sqrt{\frac{1}{R^2} + (\frac{1}{X_L}-\frac{1}{X_C})^2}}$
$\phi = \mathrm{arctan} (\dfrac{R}{\frac{1}{\frac{1}{X_L} - \frac{1}{X_C}}})$
Input quantities:
Resistance Ω
Inductance H
Capacitance F
Frequency Hz
Type:
Output quantities:
Capacitor reactance Ω
Inductor reactance Ω
Impedance Ω
Imaginary impedance part Ω
Phase shift rad
Phase shift °

Resonant frequency

Enter two quantities, the third one will be calculated.
$f_r = \dfrac{1}{2 \cdot \mathrm{\pi} \cdot \sqrt{ L \cdot C}}$
Inductance H
Capacitance F
Frequency Hz

Critical damping (aperiodic) resistor for RLC circuit

Input quantities:
$Q < 0.5$ ($Q=\dfrac{R}{Z_0}$ for parallel circuit, $Q=\dfrac{Z_0}{R}$ for series circuit, $Z_0 = \sqrt{\dfrac{L}{C}}$)
Inductance H
Capacitance F
Type:
Result:
Resistance: 0Ω

Capacitor peak dv/dt, peak current

Enter two quantities, the third one will be calculated.
$I_{max}=C \cdot {\mathrm{max}(\dfrac{\mathrm{d}v(t)}{\mathrm{d}t})}$
Capacitance F
dv/dt V/μs
Max. current A

Sine wave dv/dt (di/dt)

Enter two quantities, the other one will be calculated.
$\mathrm{max} \dfrac{\mathrm{d}v(t)}{\mathrm{d}t} = 2 \cdot \mathrm{\pi} \cdot f \cdot V_m$
Amplitude V (A)
dv/dt or di/dt V/s (A/s)
Frequency Hz

Sine wave amplitude ↔ RMS

Enter one quantity, the other one will be calculated.
$V_{pk} = \sqrt{2} \cdot V_{rms}$
Amplitude V (A)
RMS V (A)

Rise time, bandwidth

Select encoding/use, enter one quantity, the other one will be calculated.
Assuming first order system, 3 dB permissible attenuation at max. frequency, 10% to 90% rise time, some rounding is done.
NRZ/RZ = (Non) Return-To-Zero
$t_r = \dfrac{0.35}{BW} \mathrm{(RZ)}, t_r = \dfrac{0.7}{BW} \mathrm{(NRZ)}$
Encoding/use (RZ/NRZ/analog):
Rise time s
Bandwidth/max. freq.: Hz/Baud

RC low-pass filter

Enter three quantities, the fourth one will be calculated.
Input/output quantities:
Resistance Ω
Capacitance F
Frequency Hz
Attenuation dB
Output quantities:
Phase angle °

RC high-pass filter

Enter three quantities, the fourth one will be calculated.
Input/output quantities:
Resistance Ω
Capacitance F
Frequency Hz
Attenuation dB
Output quantities:
Phase angle °

Power ratio / decibel conversion

Input one quantity, the other one will be calculated.
$\mathrm{ratio (dB)} = 10 \cdot \mathrm{lg(ratio)}$
Power ratio
dB

Voltage ratio / decibel conversion

Enter one quantity, the other one will be calculated.
$\mathrm{ratio (dB)} = 20 \cdot \mathrm{lg(ratio)}$
Voltage ratio
dB

Power / dBm conversion

Enter one quantity, the other one will be calculated.
$P = 10^{(0.1 \cdot ({P_{dBm}-30}))}$
PowerW
dBm

Inductor current rise

$\mathrm{\Delta}I = \dfrac{V \cdot \mathrm{\Delta} T}{L}$
Input quantities:
Inductance H
Voltage V
Δ time s
Output quantities:
Δ current A

Toroid inductance/turns

Enter either inductance or turn count, the other quantity will be automatically calculated.
$L = \dfrac{\mu_r \cdot \mathrm{\mu_0} \cdot N^2 \cdot S}{\mathrm{\pi} \cdot d}$
Input quantities:
Permeability
Permeability
Outer diameter m
Inner diameter m
Height m
Cross section (circular cross-section is calculated from the diameters)
Input/output quantities:
Inductance H
Turns

Capacitor voltage rise

$\mathrm{\Delta}V = \dfrac{I \cdot \mathrm{\Delta} T}{C}$
Input quantities:
Capacitance F
Current A
Δ time s
Output quantities:
Δ voltage V

Capacitance

Enter three quantities, the other one will be calculated.
$C = \dfrac{S \cdot \epsilon_r \cdot \mathrm{\epsilon_0} }{l}$
Permittivity
Permittivity
Area m2
Distance m
Capacitance F

Capacitor charge

Enter five quantities, the other one will be automatically calculated
$\tau = R \cdot C$
$t_{total} = \tau \cdot \mathrm{ln} (\dfrac{V_{supply} - V_{initial}}{V_{supply} - V_{final}})$
$V_{final} = V_{initial} + (V_{supply} - V_{initial}) \cdot (1-e^{-t/\tau})$
Input/output quantities:
Capacitance F
Resistance Ω
Supply voltage V
Initial voltage V
Final voltage V
Time s
Output quantities:
Tau constant
Initial current A
Final current A

Capacitor discharge

Enter four quantities, the other one will be automatically calculated
$\tau = R \cdot C$
$V_{final} = V_{initial} \cdot (1-e^{-t/\tau})$
Input/output quantities:
Capacitance F
Resistance Ω
Initial voltage V
Final voltage V
Time s
Output quantities:
Tau constant
Initial current A
Final current A

Capacitor stored energy

Enter two quantities, the third one will be automatically calculated
$E = 0.5 \cdot C \cdot V^2$
Capacitance F
Voltage V
Energy J

ESR ↔ tan δ

Enter the frequency, capacitance and either ESR or tan δ
$ESR = X_C \cdot \mathrm{tan}( \delta)$
Frequency Hz
Capacitance F
ESR Ω
tan δ [0-1]

Two transistor astable multivibrator

$\tau_1 = R_2 \cdot C_1$
$\tau_2 = R_3 \cdot C_2$
$t_1 = \tau_1 \cdot \mathrm{ln} (\dfrac{2 V_{CC}}{V_{CC}-V_{BE_{sat}}})$
$t_2 = \tau_1 \cdot \mathrm{ln} (\dfrac{2 V_{CC}}{V_{CC}-V_{BE_{sat}}})$
$f=\dfrac{1}{t_1 + t_2}$
Schematic
Input quantities:
R2 Ω
R3 Ω
C1 F
C2 F
Voltages:
VBEsat V
VCC V
Output quantities:
Frequency Hz
HIGH time s
LOW time s

Astable 555 frequency/duty cycle

A duty cycle lower than 50% can be achieved by connecting a diode in parallel to R2.
$V_{ctrl}$ $=$ Control voltage $(\dfrac{\% \mathrm{~of~} V_{CC}}{100})$
No diode parallel to R2: $T_{low} = \mathrm{ln}(2) \cdot R_2 \cdot C$
No diode parallel to R2: $T_{high} = (\mathrm{ln}(\dfrac{1-0.5\cdot {V_{ctrl}}}{1-V_{ctrl}}) \cdot (R1+R2) \cdot C$
Diode parallel to R2: $T_{high} = (\mathrm{ln}(\dfrac{1-0.5\cdot {V_{ctrl}}}{1-V_{ctrl}}) \cdot R1 \cdot C$ (diode drop is neglected)
$T = T_{low} + T_{high}$
$f = \dfrac{1}{T}$
$\mathrm{Duty} (\%) = 100\cdot \dfrac{T_{high}}{T}$
Input quantities:
R1 (VCC to DIS) Ω
R2 (DIS to THR, TR) Ω
C F
Diode parallel to R2
Control voltage % of VCC
Output quantities:
Frequency Hz
HIGH time s
LOW time s
Duty cycle %

Monostable 555 period

$V_{ctrl}$ $=$ Control voltage $(\dfrac{\% \mathrm{~of~} V_{CC}}{100})$
$T = -\mathrm{ln}(1-V_{ctrl}) \cdot R \cdot C$
Input quantities:
Resistor: Ω
Capacitor: F
Control voltage % of VCC
Output quantities:
Period: s

IR(S)2153(1)(D) frequency

$f \approx \dfrac{1}{1.4 \cdot (R_t+75) \cdot C_t}$
Input quantities:
Timing resistor: Ω
Timing capacitor: F
Output quantities:
Frequency Hz

UC3842, UC3843, UC3844, UC3845 frequency

The result may not be accurate if the timing resistor is lower than 5kΩ
$f_{osc} \approx \dfrac{1.8}{R_t \cdot C_t}$
Input quantities:
Timing resistor: Ω
Timing capacitor: F
Chip:
Output quantities:
Oscillator frequency Hz
Output frequency Hz

TL494/KA7500 frequency

$f_{osc} \approx \dfrac{1}{R_t \cdot C_t}$
Input quantities:
Timing resistor: Ω
Timing capacitor: F
Mode:
Output quantities:
Oscillator frequency Hz
Output frequency Hz

Voltage regulator feedback

Enter three quantities, the other one will be auto-calculated
$V_{out} = V_{ref} \cdot (\dfrac{R2}{R1}+1)$
ChipVoltage
LM317T1.25V
MC340631.25V
LM2576-ADJ1.23V
LM2596-ADJ1.23V
UC384x (VFB)2.5V
R1: Ω (Reference drop)
R2: Ω
Reference voltage: V
Output voltage: V

MOSFET, IGBT, diode switching loss calculator, SEMIKRON AN1403 method

Calculate conduction loss separately (approximately IRMS*resistance for FETs, or IAVG for diodes and IGBTs). Gate drive loss is neglected.
The "scaling factor" KS is not included in the Semikron PDF. According to simulations, if a MOSFET has a certain switching loss with certain gate drive resistance (external+internal gate resistance) and it is doubled, the loss will be also roughly doubled (Ks≈2). The MOSFET coefficients also aren't present in the original PDF and were determined empirically through simulations. Switch and diode losses must be calculated separately.
Calculate turn-on and turn-off losses separately and add the results. Diode turn-on losses are usually neglectable compared to conduction and turn-off.

$P_{sw} = f \cdot E_{ref} \cdot (\dfrac{I}{I_{ref}})^{K_I} \cdot (\dfrac{V}{V_{ref}})^{K_V} \cdot (1 + K_T \cdot (T-T_{ref})) \cdot K_S$
Part type: Select "custom" to adjust Kx
Switching loss (energy) at Vref, Iref J
Reference current A
Reference voltage V
Reference temperature:°C
Current: A
Voltage: V
Junction temperature:°C
Frequency: Hz
Custom Ki:
Custom Kv:
Custom Kt:
Scaling factor:
Power dissipation:0W

MOSFET switching loss estimation

Calculate conduction loss separately (approximately IRMS*resistance for FETs, or IAVG for diodes and IGBTs).
Switch and diode (internal diode - if it conducts) losses must be also calculated separately.
Don't forget to add prefixes, times are usually in nanoseconds.
The gate resistance effect (tr, tf depend on Rg) calculation is usable only if the gate drive voltage is close to the reference.
If only a light load is switched at a high frequency, it might be a good idea to add the D-S capacitance discharge loss. However, this capacitance might also reduce turn-off loss.
The coefficients were determined theoretically by linearizing the waveform and integrating instantaneous power through the switching times while rising/falling. Select "Custom" in dropdown menus to use custom Kl.

$K_g = \dfrac{R_{g\_{int}}+R_{g\_{ext}}}{R_{g\_{int}}+R_{{g\_{ext}}\_{ref}}}$
$E_{cap} = 0.5 \cdot C_{oss} \cdot {V^2_{ds\_{off}}}$
${E_{sw}}_{on} = K_c \cdot K_g \cdot K_l \cdot t_r \cdot {V_{ds\_on}} \cdot {I_{d\_on}}$
${E_{sw}}_{off} = K_c \cdot K_g \cdot K_l \cdot t_f \cdot {V_{ds\_off}} \cdot {I_{d\_off}}$
$P_{sw} = f*({E_{sw\_on}}+{E_{sw\_off}}+E_{cap})$
Switching frequency Hz
Reference rise time s
Reference fall time s
Turn-on drain-source voltage V
Turn-on drain current A
Turn-off drain-source voltage V
Turn-off drain current A
Consider gate resistor:
External gate resistance Ω
Reference ext. gate resistance Ω
Internal gate resistance Ω
Consider Cds:
Drain-source capacitance F
Turn-on load:
Turn-off load:
Custom Kl coefficient, turn-on
Custom Kl coefficient, turn-off
Custom Esw scaling factor KC:
Power dissipation:0W

MOSFET/IGBT gate drive loss

$P_{gd} = f \cdot V_{gs\_s} \cdot Q_g$
Frequency: Hz
Gate voltage swing: V
Gate charge: C
Power dissipation:0W

MOSFET, IGBT, diode, resistor conduction loss calculator

Enter only quantities related to the waveform and part type
This function (conduction loss for various waveforms) is still UNDER CONSTRUCTION and might not be accurate.
For simplicity, constant voltage drop is assumed for diodes, constant resistance is assumed for MOSFETs.
${P_{D,IGBT}} \approx V_{drop} \cdot I_{ARV}$
$P_{MOSFET} \approx R \cdot I^2_{RMS}$
Table
* this is only a fairly rough estimation (error ≤6.7%), valid only for Imt<5*Ims
Multiply RMS value of sine/triangle by sqrt(2) to get RMS value of half-rectified sine/triangle
Ims refers to sine amplitude, Imt to triangle amplitude.
Waveform$I_{RMS}$$I_{ARV}$
Sine$0.7071 \cdot I_m$$0.6366 \cdot I_m$
Triangle$0.5774 \cdot I_m$$0.5 \cdot I_m$
Square, D=0 to 1$\sqrt{D \cdot I_{high}^2 +(1-D)\cdot I_{low}^2}$$D \cdot I_{high} \\+ (1-D) \cdot I_{low}$
Superposed triangle and sine, min. at t=0 $\sqrt{I_{rms}^2} \\ I_{rms}^2 = \\ (0.5372 \cdot I_{mt} \\ +0.7071*I_{ms})^2 \\ +(0.0699*I_{mt})^2 $ $0.6366 \cdot I_{ms} \\ + 0.5 \cdot I_{mt}$
Superposed triangle and sine, tri. +max. at t=0 $\sqrt{I^2_{rms}} \\ I_{rms}^2 = \\ ((0.5774*I_{mt})^2 \\ +(0.7071*I_{ms})^2)$ $I_{ms} \cdot (0.62+0.2338*(\frac{I_{mt}}{I{ms}}) \\ +0.0403 \cdot (\frac{I_{mt}}{I_{ms}})^2 \\ -0.002\cdot(\frac{I_{mt}}{I{ms}})^3)$  (*)
Part type:
Waveform:
Rectangular wave, low current: A
Rectangular wave, high current: A
Rectangular wave, duty cycle: %
Sine/half-sine current amplitude: A
Triangle/half-triangle current amplitude: A
Custom RMS current: A
Custom average rectified current: A
MOSFET on-state/resistor resistance: Ω
IGBT/Diode voltage drop: V
Power dissipation:0W

Hide feature list Show feature list

Function list:
  • basic calculations (DC power, AC power, LED resistor, Ohm's law, E6/E12/E24 series selector)
  • capacitor reactance, inductor reactance, RLC impedance, aperiodicity, resonant frequency calculation
  • capacitor dv/dt, maximum current calculation, tan delta to ESR converter
  • rise time ↔ bandwidth calculator
  • decibel to ratio conversions
  • toroid inductance calculator
  • capacitor energy and voltage rise
  • 555, TL494, UC384x calculator
  • MOSFET, IGBT, diode switching and conduction loss calculator
 

Adverts from webhosting:
Získejte registraci domén s tld .online, .space, .store, .tech zdarma!
Stačí si k jedné z těchto domén vybrat hosting Plus nebo Mega a registraci domény od nás dostanete za 0 Kč!
Objednat